enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    Uranium-238 (238 U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor.

  3. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    Depleted uranium has an even higher concentration of 238 U, and even low-enriched uranium (LEU) is still mostly 238 U. Reprocessed uranium is also mainly 238 U, with about as much uranium-235 as natural uranium, a comparable proportion of uranium-236, and much smaller amounts of other isotopes of uranium such as uranium-234, uranium-233, and ...

  4. Enriched uranium - Wikipedia

    en.wikipedia.org/wiki/Enriched_uranium

    Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).

  5. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    Uranium-238 is the most stable isotope of uranium, with a half-life of about 4.463 × 10 9 years, [7] roughly the age of the Earth. Uranium-238 is predominantly an alpha emitter, decaying to thorium-234. It ultimately decays through the uranium series, which has 18 members, into lead-206. [17]

  6. Weapons-grade nuclear material - Wikipedia

    en.wikipedia.org/wiki/Weapons-grade_nuclear_material

    Pu-239 is produced artificially in nuclear reactors when a neutron is absorbed by U-238, forming U-239, which then decays in a rapid two-step process into Pu-239. [22] It can then be separated from the uranium in a nuclear reprocessing plant. [23] Weapons-grade plutonium is defined as being predominantly Pu-239, typically about 93% Pu-239. [24]

  7. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The three long-lived nuclides are uranium-238 (half-life 4.5 billion years), uranium-235 (half-life 700 million years) and thorium-232 (half-life 14 billion years). The fourth chain has no such long-lasting bottleneck nuclide near the top, so almost all of the nuclides in that chain have long since decayed down to just before the end: bismuth-209.

  8. Natural uranium - Wikipedia

    en.wikipedia.org/wiki/Natural_uranium

    Natural uranium (NU or U nat [1]) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235 , 99.284% uranium-238 , and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from uranium-235, 48.6% from uranium-238, and 49.2% from uranium-234.

  9. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    uranium-238: 4.468 141.0 thorium-232: 14.05 443 10 18 seconds (exaseconds) isotope half-life 10 9 years 10 18 seconds lutetium-176: 37.64 1.188 rhenium-187: 41.22 1.301