enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  3. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Work, a function of energy, is force times distance. = This says that the work is equal to the line integral of the force F along a path C; for details see the mechanical work article. Work and thus energy is frame dependent. For example, consider a ball being hit by a bat.

  4. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered ...

  5. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    In science, work is the energy transferred to or from an object via the application of force along a displacement.In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled.

  6. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    The British imperial units and U.S. customary units for both energy and work include the foot-pound force (1.3558 J), the British thermal unit (BTU) which has various values in the region of 1055 J, the horsepower-hour (2.6845 MJ), and the gasoline gallon equivalent (about 120 MJ). Log-base-10 of the ratios between various measures of energy

  7. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    If energy is added by means other than combustion, then a further assumption is that the exhaust gases would be passed from the exhaust to a heat exchanger that would sink the waste heat to the environment and the working gas would be reused at the inlet stage. The difference between an idealized cycle and actual performance may be significant. [2]

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Rockets work by creating unbalanced high pressure that pushes the rocket upwards while exhaust gas exits through an open nozzle. [28] Overly brief paraphrases of the third law, like "action equals reaction" might have caused confusion among generations of students: the "action" and "reaction" apply to different bodies. For example, consider a ...

  9. Mechanical equivalent of heat - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equivalent_of_heat

    A collaboration between Nicolas Clément and Sadi Carnot in the 1820s had some related thinking near the same lines. [1] In 1845, Joule published a paper entitled "The Mechanical Equivalent of Heat", in which he specified a numerical value for the amount of mechanical work required to produce a unit of heat.