Search results
Results from the WOW.Com Content Network
The modulation index (or modulation depth) of a modulation scheme describes by how much the modulated variable of the carrier signal varies around its unmodulated level. It is defined differently in each modulation scheme. Amplitude modulation index; Frequency modulation index; Phase modulation index
For the case of a carrier modulated by a single sine wave, the resulting frequency spectrum can be calculated using Bessel functions of the first kind, as a function of the sideband number and the modulation index. The carrier and sideband amplitudes are illustrated for different modulation indices of FM signals.
Carrier wave - Wikipedia
A 220 Hz carrier tone f c modulated by a 440 Hz modulating tone f m, with various choices of frequency modulation index, β. The time domain signals are illustrated above, and the corresponding spectra are shown below (spectrum amplitudes in dB). Waveforms for each β. Spectra for each β
The power of an AM radio signal plotted against frequency. fc is the carrier frequency, fm is the maximum modulation frequency. In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio ...
Waterfall plot of a 146.52 MHz radio carrier, with amplitude modulation by a 1,000 Hz sinusoid. Two strong sidebands at + and - 1 kHz from the carrier frequency are shown. A carrier, frequency modulated by a 1,000 Hz sinusoid. The modulation index has been adjusted to around 2.4, so the carrier frequency has small amplitude. Several strong ...
is the peak frequency deviation; is the highest frequency in the modulating signal. For example, a typical VHF/UHF two-way radio signal using FM mode, [2] with 5 kHz peak deviation, and a maximum audio frequency of 3 kHz, would require an approximate bandwidth of 2 × (5 kHz + 3 kHz) = 16 kHz.
In MSK the difference between the higher and lower frequency is identical to half the bit rate. Consequently, the waveforms used to represent a 0 and a 1 bit differ by exactly half a carrier period. Thus, the maximum frequency deviation is δ = 0.5 f m where f m is the maximum modulating frequency. As a result, the modulation index m is 0.5.