Search results
Results from the WOW.Com Content Network
Under this definition, the only nuclides that are fissionable but not fissile are those nuclides that can be made to undergo nuclear fission but produce insufficient neutrons, in either energy or number, to sustain a nuclear chain reaction. As such, while all fissile isotopes are fissionable, not all fissionable isotopes are fissile.
The bounds of this factor are 0 and 1, with a value of 1 describing a system for which the entire system is made of fissile nuclei (i.e. thermal neutrons can only react with fissile materials). Similarly, a value of 0.5 describes a system for which reactions with fissile and non-fissile nuclei are equal.
The two (or more) nuclei produced are most often of comparable but slightly different sizes, typically with a mass ratio of products of about 3 to 2, for common fissile isotopes. [ 1 ] [ 2 ] Most fissions are binary fissions (producing two charged fragments), but occasionally (2 to 4 times per 1000 events), three positively charged fragments ...
The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...
Experiments have been conducted with uranium-233 (the fissile material at the heart of the thorium fuel cycle). Neptunium-237 and some isotopes of americium might be usable, but it is not clear that this has ever been implemented. The latter substances are part of the minor actinides in spent nuclear fuel. [6]
Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide. Uranium-235 has a half-life of 703.8 million years. It was discovered in 1935 by Arthur Jeffrey Dempster.
Iran is now enriching uranium to up to 60% fissile purity, close to the 90% of weapons grade, at two sites, and in theory it has enough material enriched to that level, if enriched further, for ...
In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties (specifically, its nuclear fission cross-section), density, shape, enrichment, purity, temperature, and