Search results
Results from the WOW.Com Content Network
The Bode phase plot is the graph of the phase, commonly expressed in degrees, of the transfer function ((=)) as a function of . The phase is plotted on the same logarithmic ω {\displaystyle \omega } -axis as the magnitude plot, but the value for the phase is plotted on a linear vertical axis.
This is a little over 6 dB/octave and is the more usual description given for this roll-off. This can be shown to be so by considering the voltage transfer function, A, of the RC network: [1] = = + Frequency scaling this to ω c = 1/RC = 1 and forming the power ratio gives,
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.
In the middle of the 20th century, Bode proposed the first idea involving the use of fractional-order controllers in a feedback problem by what is known as Bode's ideal transfer function. Bode proposed that the ideal shape of the Nyquist plot for the open loop frequency response is a straight line in the complex plane, which provides ...
The transfer function of an ideal differentiator is =-, resulting in the Bode plot of its magnitude having a positive +20 dB per decade slope over all frequencies and having unity gain at =. Advantages
The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...
in the open left half of the complex plane for continuous time, when the Laplace transform is used to obtain the transfer function. inside the unit circle for discrete time, when the Z-transform is used. The difference between the two cases is simply due to the traditional method of plotting continuous time versus discrete time transfer functions.