Search results
Results from the WOW.Com Content Network
The nonlinear damping parameter is equal to μ = 8.53, while the forcing has amplitude A = 1.2 and angular frequency ω = 2π/10. The forced, or driven, Van der Pol oscillator takes the 'original' function and adds a driving function Asin(ωt) to give a differential equation of the form:
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
Dynamical neuroscience describes the non-linear dynamics at many levels of the brain from single neural cells [3] to cognitive processes, sleep states and the behavior of neurons in large-scale neuronal simulation. [4] Neurons have been modeled as nonlinear systems for decades, but dynamical systems are not constrained to neurons.
However, real-world systems are often nonlinear and multidimensional, in some instances rendering explicit equation-based modeling problematic. Empirical models, which infer patterns and associations from the data instead of using hypothesized equations, represent a natural and flexible framework for modeling complex dynamics.
The newer nonlinear modelling approaches include non-parametric methods, such as feedforward neural networks, kernel regression, multivariate splines, etc., which do not require a priori knowledge of the nonlinearities in the relations. Thus the nonlinear modelling can utilize production data or experimental results while taking into account ...
Nonlinear control theory is the area of control theory which deals with systems that are nonlinear, time-variant, or both. Control theory is an interdisciplinary branch of engineering and mathematics that is concerned with the behavior of dynamical systems with inputs, and how to modify the output by changes in the input using feedback ...
Sparse identification of nonlinear dynamics (SINDy) is a data-driven algorithm for obtaining dynamical systems from data. [1] Given a series of snapshots of a dynamical system and its corresponding time derivatives, SINDy performs a sparsity-promoting regression (such as LASSO) on a library of nonlinear candidate functions of the snapshots against the derivatives to find the governing equations.
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).