enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. One-class classification - Wikipedia

    en.wikipedia.org/wiki/One-class_classification

    The hypersphere containing the target data having center c and radius r. Objects on the boundary are support vectors, and two objects lie outside the boundary having slack greater than 0. SVM based one-class classification (OCC) relies on identifying the smallest hypersphere (with radius r, and center c) consisting of all the data points. [10]

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Classification of satellite data like SAR data using supervised SVM. [15] Hand-written characters can be recognized using SVM. [16] [17] The SVM algorithm has been widely applied in the biological and other sciences. They have been used to classify proteins with up to 90% of the compounds classified correctly.

  4. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    The SVM learning code from both libraries is often reused in other open source machine learning toolkits, including GATE, KNIME, Orange [3] and scikit-learn. [4] Bindings and ports exist for programming languages such as Java, MATLAB, R, Julia, and Python. It is available in e1071 library in R and scikit-learn in Python.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Provides classification and regression datasets in a standardized format that are accessible through a Python API. Metatext NLP: https://metatext.io/datasets web repository maintained by community, containing nearly 1000 benchmark datasets, and counting.

  6. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products.

  7. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  8. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    The training and test-set errors can be measured without bias and in a fair way using accuracy, precision, Auc-Roc, precision-recall, and other metrics. Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a

  9. Multi-label classification - Wikipedia

    en.wikipedia.org/wiki/Multi-label_classification

    The scikit-learn Python package implements some multi-labels algorithms and metrics. The scikit-multilearn Python package specifically caters to the multi-label classification. It provides multi-label implementation of several well-known techniques including SVM, kNN and many more. The package is built on top of scikit-learn ecosystem.