Search results
Results from the WOW.Com Content Network
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
The Bresenham Line-Drawing Algorithm by Colin Flanagan; National Institute of Standards and Technology page on Bresenham's algorithm; Calcomp 563 Incremental Plotter Information; Bresenham Algorithm in several programming languages; The Beauty of Bresenham's Algorithm – A simple implementation to plot lines, circles, ellipses and Bézier curves
Bresenham's line algorithm, developed in 1962, is his most well-known innovation. It determines which points on a 2-dimensional raster should be plotted in order to form a straight line between two given points, and is commonly used to draw lines on a computer screen. It is one of the earliest algorithms discovered in the field of computer ...
Midpoint_circle_algorithm,_radius_23.png (589 × 589 pixels, file size: 3 KB, MIME type: image/png) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
A simple way to parallelize single-color line rasterization is to let multiple line-drawing algorithms draw offset pixels of a certain distance from each other. [2] Another method involves dividing the line into multiple sections of approximately equal length, which are then assigned to different processors for rasterization. The main problem ...
Raster graphic image. In computer graphics, rasterisation (British English) or rasterization (American English) is the task of taking an image described in a vector graphics format (shapes) and converting it into a raster image (a series of pixels, dots or lines, which, when displayed together, create the image which was represented via shapes).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
I'd like to note that these line drawing algorithms posted by PrisonerOfPain and the Bresenham's line algorithm discussed in the article will not even work for some lines going right down. Here is an example, line start at [1,1] and ends at [3, 25] the line is going right down(in the raster coordinate system), as you will see you'll loop only 2 ...