Search results
Results from the WOW.Com Content Network
The degree Celsius (°C) can refer to a specific temperature on the Celsius scale as well as a unit to indicate a temperature interval (a difference between two temperatures). From 1744 until 1954, 0 °C was defined as the freezing point of water and 100 °C was defined as the boiling point of water, both at a pressure of one standard atmosphere .
To convert a delta temperature from degrees Fahrenheit to degrees Celsius, the formula is {ΔT} °F = 9 / 5 {ΔT} °C. To convert a delta temperature from degrees Celsius to kelvin, it is 1:1 ({ΔT} °C = {ΔT} K).
Gas mark 1 is 275 degrees Fahrenheit (135 degrees Celsius). [citation needed] Oven temperatures increase by 25 °F (14 °C) for each gas mark step. Above Gas Mark 1, the scale markings increase by one for each step. Below Gas Mark 1, the scale markings halve at each step, each representing a decrease of 25 °F (14 °C).
The Rankine scale is used in engineering systems where heat computations are done using degrees Fahrenheit. [3] The symbol for degrees Rankine is °R [2] (or °Ra if necessary to distinguish it from the Rømer and Réaumur scales). By analogy with the SI unit kelvin, some authors term the unit Rankine, omitting the degree symbol. [4] [5]
Thus a diatomic gas will require more energy input to increase its temperature by a certain amount, i.e. it will have a greater heat capacity than a monatomic gas. As noted above, the speed of sound in a gas can be calculated from the gas's molecular character, temperature, pressure, and the Boltzmann constant.
For an exact conversion between degrees Fahrenheit and Celsius, and kelvins of a specific temperature point, the following formulas can be applied. Here, f is the value in degrees Fahrenheit, c the value in degrees Celsius, and k the value in kelvins: f °F to c °C: c = f − 32 / 1.8 c °C to f °F: f = c × 1.8 + 32
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Note that the m³ gas conversion factor takes into account a difference in the standard temperature base for measurement of gas volumes in metric and imperial units. The standard temperature for metric measurement is 15 degrees Celsius (i.e. 59 degrees Fahrenheit) while for English measurement the standard temperature is 60 °F.