enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...

  3. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  4. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence.

  5. Superperfect number - Wikipedia

    en.wikipedia.org/wiki/Superperfect_number

    (sequence A019279 in the OEIS). To illustrate: it can be seen that 16 is a superperfect number as σ(16) = 1 + 2 + 4 + 8 + 16 = 31, and σ(31) = 1 + 31 = 32, thus σ(σ(16)) = 32 = 2 × 16. If n is an even superperfect number, then n must be a power of 2, 2 k, such that 2 k+1 − 1 is a Mersenne prime. [1] [2]

  6. Integer sequence - Wikipedia

    en.wikipedia.org/wiki/Integer_sequence

    An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.

  7. Complete sequence - Wikipedia

    en.wikipedia.org/wiki/Complete_sequence

    For example, the sequence of powers of two (1, 2, 4, 8, ...), the basis of the binary numeral system, is a complete sequence; given any natural number, we can choose the values corresponding to the 1 bits in its binary representation and sum them to obtain that number (e.g. 37 = 100101 2 = 1 + 4 + 32). This sequence is minimal, since no value ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    A bijection with the sums to n is to replace 1 with 0 and 2 with 11. The number of binary strings of length n without an even number of consecutive 0 s or 1 s is 2F n. For example, out of the 16 binary strings of length 4, there are 2F 4 = 6 without an even number of consecutive 0 s or 1 s—they are 0001, 0111, 0101, 1000, 1010, 1110. There is ...

  1. Related searches schoolengage account access page number 2 4 8 16 what is this sequence arithmetic

    all number sequencesnumber sequence of digits
    number sequence chart