Search results
Results from the WOW.Com Content Network
Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance. The input integers are positive, and T = sum(S)/2.
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this input set is sum(S) + z 1 + z 2 = 2 sum(S) + 2T, so the target sum for Partition is sum(S) + T. Suppose there exists a solution S′ to the SubsetSum instance
Instances of the 2-satisfiability problem are typically expressed as Boolean formulas of a special type, called conjunctive normal form (2-CNF) or Krom formulas. Alternatively, they may be expressed as a special type of directed graph , the implication graph , which expresses the variables of an instance and their negations as vertices in a ...
A different summation formula represents each Bell number as a sum of Stirling numbers of the second kind B n = ∑ k = 0 n { n k } . {\displaystyle B_{n}=\sum _{k=0}^{n}\left\{{n \atop k}\right\}.} The Stirling number { n k } {\displaystyle \left\{{n \atop k}\right\}} is the number of ways to partition a set of cardinality n into exactly k ...
Frobenius coin problem with 2-pence and 5-pence coins visualised as graphs: Sloping lines denote graphs of 2x+5y=n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively. A point on a line gives a combination of 2p and 5p for its given total (green).
In the fractional set cover problem, it is allowed to select fractions of sets, rather than entire sets. A fractional set cover is an assignment of a fraction (a number in [0,1]) to each set in , such that for each element x in the universe, the sum of fractions of sets that contain x is at least 1. The goal is to find a fractional set cover in ...
Max-sum MSSP: for each subset j in 1,...,m, there is a capacity C j. The goal is to make the sum of all subsets as large as possible, such that the sum in each subset j is at most C j. [1] Max-min MSSP (also called bottleneck MSSP or BMSSP): again each subset has a capacity, but now the goal is to make the smallest subset sum as large as ...