enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3SUM - Wikipedia

    en.wikipedia.org/wiki/3SUM

    In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).

  3. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    For example, if you had two types of coins valued at 6 cents and 14 cents, the GCD would equal 2, and there would be no way to combine any number of such coins to produce a sum which was an odd number; additionally, even numbers 2, 4, 8, 10, 16 and 22 (less than m=24) could not be formed, either.

  4. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    In the th step, it computes the subarray with the largest sum ending at ; this sum is maintained in variable current_sum. [note 3] Moreover, it computes the subarray with the largest sum anywhere in […], maintained in variable best_sum, [note 4] and easily obtained as the maximum of all values of current_sum seen so far, cf. line 7 of the ...

  5. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    Coin values can be modeled by a set of n distinct positive integer values (whole numbers), arranged in increasing order as w 1 through w n.The problem is: given an amount W, also a positive integer, to find a set of non-negative (positive or zero) integers {x 1, x 2, ..., x n}, with each x j representing how often the coin with value w j is used, which minimize the total number of coins f(W)

  6. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    When the ideal result of an integer operation is outside the type's representable range and the returned result is obtained by clamping, then this event is commonly defined as a saturation. Use varies as to whether a saturation is or is not an overflow. To eliminate ambiguity, the terms wrapping overflow [2] and saturating overflow [3] can be used.

  7. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Each input integer can be represented by 3nL bits, divided into 3n zones of L bits. Each zone corresponds to a vertex. For each edge (w,x,y) in the 3DM instance, there is an integer in the SSP instance, in which exactly three bits are "1": the least-significant bits in the zones of the vertices w, x, and y.

  8. Legendre's three-square theorem - Wikipedia

    en.wikipedia.org/wiki/Legendre's_three-square...

    Gauss [10] pointed out that the four squares theorem follows easily from the fact that any positive integer that is 1 or 2 mod 4 is a sum of 3 squares, because any positive integer not divisible by 4 can be reduced to this form by subtracting 0 or 1 from it. However, proving the three-square theorem is considerably more difficult than a direct ...

  9. Project Euler - Wikipedia

    en.wikipedia.org/wiki/Project_Euler

    The first Project Euler problem is Multiples of 3 and 5. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. It is a 5% rated problem, indicating it is one of the easiest on the site.