Search results
Results from the WOW.Com Content Network
The delta-v required is the vector change in velocity between the two planes at that point. However, maximum efficiency of inclination changes are achieved at apoapsis, (or apogee), where orbital velocity is the lowest. In some cases, it can require less total delta-v to raise the satellite into a higher orbit, change the orbit plane at the ...
Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during
Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...
Maximum efficiency of inclination change is achieved at apoapsis, (or apogee), where orbital velocity is the lowest. In some cases, it may require less total delta v to raise the spacecraft into a higher orbit, change the orbit plane at the higher apogee, and then lower the spacecraft to its original altitude. [10]
The magnitude of the required delta-v for this burn is =. When the apoapsis of the first transfer ellipse is reached at a distance r b {\displaystyle r_{b}} from the primary, a second prograde burn (mark 2) raises the periapsis to match the radius of the target circular orbit, putting the spacecraft on a second elliptic trajectory (orange half ...
These are executed as thruster burns orthogonal to the orbital plane. For Sun-synchronous spacecraft having a constant geometry relative to the Sun, the inclination change due to the solar gravitation is particularly large; a delta-v in the order of 1–2 m/s per year can be needed to keep the inclination constant. [citation needed]
The diagram shows a Hohmann transfer orbit to bring a spacecraft from a lower circular orbit into a higher one. It is an elliptic orbit that is tangential both to the lower circular orbit the spacecraft is to leave (cyan, labeled 1 on diagram) and the higher circular orbit that it is to reach (red, labeled 3 on diagram).
The change of the specific energy of the rocket per unit change of delta-v is | | which is |v| times the cosine of the angle between v and a. Thus, when applying delta-v to increase specific orbital energy, this is done most efficiently if a is applied in the direction of v , and when | v | is large.