enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    Bertrand's box paradox: the three equally probable outcomes after the first gold coin draw. The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is ⁠ 0 / 3 ⁠ + ⁠ 1 / 3 ⁠ + ⁠ 1 / 3 ⁠ = ⁠ 2 / 3 ⁠.

  3. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    The practical problem of checking whether a coin is fair might be considered as easily solved by performing a sufficiently large number of trials, but statistics and probability theory can provide guidance on two types of question; specifically those of how many trials to undertake and of the accuracy of an estimate of the probability of ...

  4. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    Frobenius coin problem with 2-pence and 5-pence coins visualised as graphs: Sloping lines denote graphs of 2x+5y=n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively. A point on a line gives a combination of 2p and 5p for its given total (green).

  5. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have /

  6. Sleeping Beauty problem - Wikipedia

    en.wikipedia.org/wiki/Sleeping_Beauty_problem

    These questions ask for the probability of two different events, and thus can have different answers, even though both events are causally dependent on the coin landing heads. (This fact is even more obvious when one considers the complementary questions: "what is the probability that two red balls were placed in the box" and "what is the ...

  7. Monty Hall problem - Wikipedia

    en.wikipedia.org/wiki/Monty_Hall_problem

    After choosing a box at random and withdrawing one coin at random that happens to be a gold coin, the question is what is the probability that the other coin is gold. As in the Monty Hall problem, the intuitive answer is ⁠ 1 / 2 ⁠ , but the probability is actually ⁠ 2 / 3 ⁠ .

  8. St. Petersburg paradox - Wikipedia

    en.wikipedia.org/wiki/St._Petersburg_paradox

    The St. Petersburg paradox or St. Petersburg lottery [1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the ...

  9. Bertrand paradox (probability) - Wikipedia

    en.wikipedia.org/wiki/Bertrand_paradox_(probability)

    The Bertrand paradox is a problem within the classical interpretation of probability theory. Joseph Bertrand introduced it in his work Calcul des probabilités (1889) [1] as an example to show that the principle of indifference may not produce definite, well-defined results for probabilities if it is applied uncritically when the domain of possibilities is infinite.