Search results
Results from the WOW.Com Content Network
Since the graph of an affine(*) function is a line, the graph of a piecewise linear function consists of line segments and rays. The x values (in the above example −3, 0, and 3) where the slope changes are typically called breakpoints, changepoints, threshold values or knots.
Line chart showing the population of the town of Pushkin, Saint Petersburg from 1800 to 2010, measured at various intervals. A line chart or line graph, also known as curve chart, [1] is a type of chart that displays information as a series of data points called 'markers' connected by straight line segments. [2]
In calculus and related areas of mathematics, a linear function from the real numbers to the real numbers is a function whose graph (in Cartesian coordinates) is a non-vertical line in the plane. [1] The characteristic property of linear functions is that when the input variable is changed, the change in the output is proportional to the change ...
In mathematics, the term linear function refers to two distinct but related notions: [1] In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2] For distinguishing such a linear function from the other concept, the term affine function is often used ...
A line graph has an articulation point if and only if the underlying graph has a bridge for which neither endpoint has degree one. [2] For a graph G with n vertices and m edges, the number of vertices of the line graph L(G) is m, and the number of edges of L(G) is half the sum of the squares of the degrees of the vertices in G, minus m. [6]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Trending Walmart Black Friday Deals. HP 15.6 inch Windows Laptop, $199 (was $379) Apple AirPods 2nd Gen, $89 (was $129). Shark Navigator Lift-Away XL Upright Vacuum, $97 (was $199). KitchenAid ...
In mathematics, the term linear is used in two distinct senses for two different properties: . linearity of a function (or mapping);; linearity of a polynomial.; An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin.