Search results
Results from the WOW.Com Content Network
The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation. Intersection points of cubic Bézier curve and straight line can be computed using direct cubic equation representing Bézier curve.
The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...
The Treatise on Algebra contains his work on cubic equations. [35]: 9 It is divided into three parts: (i) equations which can be solved with compass and straight edge, (ii) equations which can be solved by means of conic sections, and (iii) equations which involve the inverse of the unknown. [24]: § 3
The cubic-plus-chain (CPC) [28] [29] [30] equation of state hybridizes the classical cubic equation of state with the SAFT chain term. [21] [22] The addition of the chain term allows the model to be capable of capturing the physics of both short-chain and long-chain non-associating components ranging from alkanes to polymers. The CPC monomer ...
For example, finding a substitution = + + for a cubic equation of degree =, = + + + such that substituting = yields a new equation ′ = + ′ + ′ + ′ such that ′ =, ′ =, or both. More generally, it may be defined conveniently by means of field theory , as the transformation on minimal polynomials implied by a different choice of ...
The equations of some of the cubics listed in the Catalogue are so incredibly complicated that the maintainer of the website has refrained from putting up the equation in the webpage of the cubic; instead, a link to a file giving the equation in an unformatted text form is provided.
He was extremely bright, so Cardano started teaching him mathematics. Ferrari aided Cardano on his solutions for biquadratic equations and cubic equations, and was mainly responsible for the solution of biquadratic equations that Cardano published. While still in his teens, Ferrari was able to obtain a prestigious teaching post in Rome after ...
Descartes theory of geometric solution of equations uses a parabola to introduce cubic equations, in this way it is possible to set up an equation whose solution is a cube root of two. Note that the parabola itself is not constructible except by three dimensional methods.