enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...

  3. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a biased estimator: it underestimates the variance by a factor of (n − 1) / n; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by n-1 instead of n, is called ...

  4. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.

  5. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    The definitional equation of sample variance is = (¯), where the divisor is called the degrees of freedom (DF), the summation is called the sum of squares (SS), the result is called the mean square (MS) and the squared terms are deviations from the sample mean. ANOVA estimates 3 sample variances: a total variance based on all the observation ...

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    This results in an approximately-unbiased estimator for the variance of the sample mean. [48] This means that samples taken from the bootstrap distribution will have a variance which is, on average, equal to the variance of the total population. Histograms of the bootstrap distribution and the smooth bootstrap distribution appear below.

  7. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    This shows that the sample mean and sample variance are independent. This can also be shown by Basu's theorem, and in fact this property characterizes the normal distribution – for no other distribution are the sample mean and sample variance independent. [3]

  8. Cauchy distribution - Wikipedia

    en.wikipedia.org/wiki/Cauchy_distribution

    In fact, the distribution of the sample mean will be equal to the distribution of the observations themselves; i.e., the sample mean of a large sample is no better (or worse) an estimator of than any single observation from the sample. Similarly, calculating the sample variance will result in values that grow larger as more observations are taken.

  9. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    is normally distributed with mean 0 and variance 1, since the sample mean ¯ is normally distributed with mean μ and variance σ 2 /n. Moreover, it is possible to show that these two random variables (the normally distributed one Z and the chi-squared-distributed one V) are independent.