Search results
Results from the WOW.Com Content Network
When naively Huffman coding binary strings, no compression is possible, even if entropy is low (e.g. ({0, 1}) has probabilities {0.95, 0.05}). Huffman encoding assigns 1 bit to each value, resulting in a code of the same length as the input. By contrast, arithmetic coding compresses bits well, approaching the optimal compression ratio of
There are tricks for implementing packed BCD and zoned decimal add–or–subtract operations using short but difficult to understand sequences of word-parallel logic and binary arithmetic operations. [49] For example, the following code (written in C) computes an unsigned 8-digit packed BCD addition using 32-bit binary operations:
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits.It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor.
The two basic types are the arithmetic left shift and the arithmetic right shift. For binary numbers it is a bitwise operation that shifts all of the bits of its operand; every bit in the operand is simply moved a given number of bit positions, and the vacant bit-positions are filled in.
The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness. Leibniz's system uses 0 and 1, like the modern ...
In binary arithmetic, division by two can be performed by a bit shift operation that shifts the number one place to the right. This is a form of strength reduction optimization. For example, 1101001 in binary (the decimal number 105), shifted one place to the right, is 110100 (the decimal number 52): the lowest order bit, a 1, is removed.
A diagram showing how manipulating the least significant bits of a color can have a very subtle and generally unnoticeable effect on the color. In this diagram, green is represented by its RGB value, both in decimal and in binary. The red box surrounding the last two bits illustrates the least significant bits changed in the binary representation.
Arithmetic values thought to have been represented by parts of the Eye of Horus. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions (not related to the binary number system) and Horus-Eye fractions (so called because many historians of mathematics believe that the symbols used for this system could be arranged to form the eye of Horus, although this ...