Ad
related to: 2 joint robot arm kinematics
Search results
Results from the WOW.Com Content Network
A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These non-linear equations are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in biomechanics of the skeleton and computer animation of articulated characters.
In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. [1] The kinematics equations of the robot are used in robotics, computer games, and animation. The reverse process, that computes the joint parameters that ...
The Stanford arm, on display at Stanford University. The Stanford arm is an industrial robot with six degrees of freedom, designed at Stanford University by Victor Scheinman in 1969. [1] The Stanford arm is a serial manipulator whose kinematic chain consists of two revolute joints at the base, a prismatic joint, and a spherical joint.
The SCARA is a type of industrial robot. The acronym stands for Selective Compliance Assembly Robot Arm [1] or Selective Compliance Articulated Robot Arm. [2] By virtue of the SCARA's parallel-axis joint layout, the arm is slightly compliant in the X-Y direction but rigid in the Z direction, hence the term selective compliance. This is ...
Inverse kinematics is the mathematical process to calculate the configuration of an arm, typically in terms of joint angles, given a desired pose of the robot hand in three dimensional space. The Canadarm reaches for a space resupply spacecraft in Earth orbit.
Kinematic models are essential for controlling the movements of robots. Robotics engineers use forward kinematics to calculate the positions and orientations of a robot's end-effector, given specific joint angles, and inverse kinematics to determine the joint movements necessary for a desired end-effector position. These calculations allow for ...
The system of six joint axes S i and five common normal lines A i,i+1 form the kinematic skeleton of the typical six degree-of-freedom serial robot. Denavit and Hartenberg introduced the convention that z-coordinate axes are assigned to the joint axes S i and x-coordinate axes are assigned to the common normals A i,i+1.
Their inevitable hysteresis and off-axis flexibility accumulates along the arm's kinematic chain; a precision serial manipulator is a compromise between precision, complexity, mass (of the manipulator and of the manipulated objects) and cost. On the other hand, with parallel manipulators, a high rigidity may be obtained with a small mass of the ...
Ad
related to: 2 joint robot arm kinematics