Search results
Results from the WOW.Com Content Network
Hydrolysis (/ h aɪ ˈ d r ɒ l ɪ s ɪ s /; from Ancient Greek hydro- 'water' and lysis 'to unbind') is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution , elimination , and solvation reactions in which water is the nucleophile .
In biochemistry, hydrolases constitute a class of enzymes that commonly function as biochemical catalysts that use water to break a chemical bond: + + This typically results in dividing a larger molecule into smaller molecules.
In biochemistry, enzymatic hydrolysis is a process in which enzymes facilitate the cleavage of bonds in molecules with the addition of the elements of water (i.e. hydrolysis). It plays an important role in the digestion of food. [1] It may be used to help provide renewable energy, as with cellulosic ethanol. [2]
Most central metabolic pathways are regulated at a few key steps, typically through enzymes whose activity involves the hydrolysis of ATP. Because this reaction releases so much energy, other reactions that are thermodynamically unfavorable can be coupled to ATP hydrolysis, driving the overall series of linked metabolic reactions. [1]: 30.1
The hydrolysis of a protein (red) by the nucleophilic attack of water (blue). The uncatalysed half-life is several hundred years. Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years.
In biochemistry, dephosphorylation is the removal of a phosphate (PO 3− 4) group from an organic compound by hydrolysis. It is a reversible post-translational modification. Dephosphorylation and its counterpart, phosphorylation, activate and deactivate enzymes by detaching or attaching phosphoric esters and anhydrides.
Phosphatases catalyze the hydrolysis of a phosphomonoester, removing a phosphate moiety from the substrate. Water is split in the reaction, with the -OH group attaching to the phosphate ion, and the H+ protonating the hydroxyl group of the other product. The net result of the reaction is the destruction of a phosphomonoester and the creation of ...
In biochemistry, a ligase is an enzyme that can catalyze the joining of two molecules by forming a new chemical bond.This is typically via hydrolysis of a small pendant chemical group on one of the molecules, typically resulting in the formation of new C-O, C-S, or C-N bonds.