enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    An electronvolt is the amount of energy gained or lost by a single electron when it moves through an electric potential difference of one volt.Hence, it has a value of one volt, which is 1 J/C, multiplied by the elementary charge e = 1.602 176 634 × 10 −19 C. [2]

  3. Coulomb - Wikipedia

    en.wikipedia.org/wiki/Coulomb

    At that time, the volt was defined as the potential difference [i.e., what is nowadays called the "voltage (difference)"] across a conductor when a current of one ampere dissipates one watt of power. The coulomb (later "absolute coulomb" or "abcoulomb" for disambiguation) was part of the EMU system of units. The "international coulomb" based on ...

  4. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.

  5. List of metric units - Wikipedia

    en.wikipedia.org/wiki/List_of_metric_units

    The joule (J) is equal to one newton-metre (1 N⋅m). The watt (W) is equal to one joule per second (1 J⋅s −1). The coulomb (C) is equal to one ampere second (1 A⋅s). The volt (V) is equal to one joule per coulomb (1 J⋅C −1). The weber (Wb) is equal to one volt-second (1 V⋅s).

  6. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.

  7. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used. Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q.

  8. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    J⋅m −3: L −1 M T −2: intensive Entropy: S: Logarithmic measure of the number of available states of a system J/K L 2 M T −2 Θ −1: extensive, scalar Force: F →: Transfer of momentum per unit time newton (N = kg⋅m⋅s −2) L M T −2: extensive, vector Frequency: f: Number of (periodic) occurrences per unit time hertz (Hz = s ...

  9. Voltage - Wikipedia

    en.wikipedia.org/wiki/Voltage

    The SI unit of work per unit charge is the joule per coulomb, where 1 volt = 1 joule (of work) per 1 coulomb of charge. [citation needed] The old SI definition for volt used power and current; starting in 1990, the quantum Hall and Josephson effect were used, [10] and in 2019 physical constants were given defined values for the definition of all SI units.