enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Paramagnetism - Wikipedia

    en.wikipedia.org/wiki/Paramagnetism

    Paramagnetism is due to the presence of unpaired electrons in the material, so most atoms with incompletely filled atomic orbitals are paramagnetic, although exceptions such as copper exist. Due to their spin, unpaired electrons have a magnetic dipole moment and act like tiny magnets. An external magnetic field causes the electrons' spins to ...

  3. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Another property we can observe by examining molecular orbital diagrams is the magnetic property of diamagnetic or paramagnetic. If all the electrons are paired, there is a slight repulsion and it is classified as diamagnetic. If unpaired electrons are present, it is attracted to a magnetic field, and therefore paramagnetic.

  4. Magnetochemistry - Wikipedia

    en.wikipedia.org/wiki/Magnetochemistry

    With one unpaired electron μ eff values range from 1.8 to 2.5 μ B and with two unpaired electrons the range is 3.18 to 3.3 μ B. Note that low-spin complexes of Fe 2+ and Co 3+ are diamagnetic. Another group of complexes that are diamagnetic are square-planar complexes of d 8 ions such as Ni 2+ and Rh + and Au 3+.

  5. Triplet oxygen - Wikipedia

    en.wikipedia.org/wiki/Triplet_oxygen

    Triplet oxygen, 3 O 2, refers to the S = 1 electronic ground state of molecular oxygen (dioxygen). Molecules of triplet oxygen contain two unpaired electrons, making triplet oxygen an unusual example of a stable and commonly encountered diradical : [ 2 ] it is more stable as a triplet than a singlet .

  6. Linnett double-quartet theory - Wikipedia

    en.wikipedia.org/wiki/Linnett_Double-Quartet_Theory

    The dot-and-cross diagram for molecular oxygen in the ground state. The oxygen nuclei are as indicated and the electrons are denoted by either dots or crosses, depending on their relative spins. The above three-dimensional LDQ structures are useful for visualising the molecular structures, but they can be laborious to construct.

  7. Singlet oxygen - Wikipedia

    en.wikipedia.org/wiki/Singlet_oxygen

    Both singlet oxygen states have no unpaired electrons and therefore no net electron spin. The 1 Δ g is however paramagnetic as shown by the observation of an electron paramagnetic resonance (EPR) spectrum. [16] [17] [18] The paramagnetism of the 1 Δ g state is due to a net orbital (and not spin) electronic angular momentum.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Unpaired electron - Wikipedia

    en.wikipedia.org/wiki/Unpaired_electron

    In chemistry, an unpaired electron is an electron that occupies an orbital of an atom singly, rather than as part of an electron pair. Each atomic orbital of an atom (specified by the three quantum numbers n, l and m) has a capacity to contain two electrons ( electron pair ) with opposite spins .