Search results
Results from the WOW.Com Content Network
A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...
Nucleophile strength is also affected by charge and electronegativity: nucleophilicity increases with increasing negative charge and decreasing electronegativity. For example, OH − is a better nucleophile than water, and I − is a better nucleophile than Br − (in polar protic solvents). In a polar aprotic solvent, nucleophilicity increases ...
Since the rate of a reaction is only determined by its slowest step, the rate at which the leaving group "leaves" determines the speed of the reaction. This means that the better the leaving group, the faster the reaction rate. A general rule for what makes a good leaving group is the weaker the conjugate base, the better the leaving group.
By contrast, stable solutions of pure enolate ions are easily prepared from most carbonyl compounds by reaction with a strong base. Second, enolate ions are more reactive than enols and undergo many reactions that enols don't. Whereas enols are neutral, enolate ions are negatively charged, making them much better nucleophiles.
In 1962, Edwards and Pearson (the latter of HSAB theory) introduced the phrase alpha effect for this anomaly. He offered the suggestion that the effect was caused by a transition state (TS) stabilization effect: on entering the TS the free electron pair on the nucleophile moves away from the nucleus, causing a partial positive charge which can be stabilized by an adjacent lone pair as for ...
If the nucleophile is a neutral molecule (i.e. a solvent) a third step is required to complete the reaction. When the solvent is water, the intermediate is an oxonium ion. This reaction step is fast. Deprotonation: Removal of a proton on the protonated nucleophile by water acting as a base forming the alcohol and a hydronium ion. This reaction ...
This makes the molecule an electrophile, and the carbon atom the electrophilic center; this atom is the primary target for the nucleophile. Chemists have developed a geometric system to describe the approach of the nucleophile to the electrophilic center, using two angles, the Bürgi–Dunitz and the Flippin–Lodge angles after scientists that ...
The S N 1 reaction is performed through a stable carbocation intermediate, the more nucleophilic solvent can stabilize the carbocation better, thus the rate constant of the reaction could be larger. Since there’s no sharp line between the S N 1 and S N 2 reaction , a reaction that goes through S N 1 mechanism more is preferred to achieve a ...