Search results
Results from the WOW.Com Content Network
It can be used to correctly interpret the statistical significance of the difference between means that have been selected for comparison because of their extreme values. The method was initially developed and introduced by John Tukey for use in Analysis of Variance (ANOVA), and usually has only been taught in connection with ANOVA.
Outside of such a specialized audience, the test output as shown below is rather challenging to interpret. Tukey's Range Test results for five West Coast cities rainfall data. The Tukey's range test uncovered that San Francisco & Spokane did not have statistically different rainfall mean (at the alpha = 0.05 level) with a p-value of 0.08.
Tukey's test is either: Tukey's range test , also called Tukey method, Tukey's honest significance test, Tukey's HSD (Honestly Significant Difference) test Tukey's test of additivity
In statistics, Tukey's test of additivity, [1] named for John Tukey, is an approach used in two-way ANOVA (regression analysis involving two qualitative factors) to assess whether the factor variables (categorical variables) are additively related to the expected value of the response variable. It can be applied when there are no replicated ...
In a scientific study, post hoc analysis (from Latin post hoc, "after this") consists of statistical analyses that were specified after the data were seen. [1] [2] They are usually used to uncover specific differences between three or more group means when an analysis of variance (ANOVA) test is significant. [3]
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data." [3]
In statistics, the Tukey–Duckworth test is a two-sample location test – a statistical test of whether one of two samples was significantly greater than the other. It was introduced by John Tukey, who aimed to answer a request by W. E. Duckworth for a test simple enough to be remembered and applied in the field without recourse to tables, let alone computers.
[5] [6] Unlike Tukey's range test, the Newman–Keuls method uses different critical values for different pairs of mean comparisons. Thus, the procedure is more likely to reveal significant differences between group means and to commit type I errors by incorrectly rejecting a null hypothesis when it is true.