Search results
Results from the WOW.Com Content Network
In physical organic chemistry, a free-energy relationship or Gibbs energy relation relates the logarithm of a reaction rate constant or equilibrium constant for one series of chemical reactions with the logarithm of the rate or equilibrium constant for a related series of reactions. [1]
The equilibrium constant for a full redox reaction can be obtained from the standard redox potentials of the constituent half-reactions. At equilibrium the potential for the two half-reactions must be equal to each other and, of course, the number of electrons exchanged must be the same in the two half reactions. [32]
The proportionality constant was called an affinity constant, k. The equilibrium condition for an "ideal" reaction was thus given the simplified form [] [] = ′ [′] [′] [A] eq, [B] eq etc. are the active masses at equilibrium. In terms of the initial amounts reagents p,q etc. this becomes
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...
In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.
English: Alternative explanations of the punctuated equilibrium pattern of evolution observed in the fossil record. Both macromutation and relatively rapid episodes of gradual evolution by natural selection could give the effect of apparently instantaneous change, since 10,000 years barely registers in the fossil record.
[11] Assume two products B and C form in a reaction: a A + d D → b B, a A + d D → c C. In this case, K eq can be defined as ratio of B to C rather than the equilibrium constant. When B / C > 1, B is the favored product, and the data on the Van 't Hoff plot will be in the positive region.
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125