Search results
Results from the WOW.Com Content Network
Surface albedo is defined as the ratio of radiosity J e to the irradiance E e (flux per unit area) received by a surface. [2] The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. [3]
Cloud albedo is a measure of the albedo or reflectivity of a cloud. Clouds regulate the amount of solar radiation absorbed by a planet and its solar surface irradiance . Generally, increased cloud cover correlates to a higher albedo and a lower absorption of solar energy .
is Earth's average albedo, measured to be 0.3. [11] [12] is Earth's average surface temperature, measured as about 288 K as of year 2020 [13] is the effective emissivity of Earth's combined surface and atmosphere (including clouds). It is a quantity between 0 and 1 that is calculated from the equilibrium to be about 0.61.
However, it also increases the global albedo from 15% to 30%, and this reduces the amount of solar radiation absorbed by the Earth by about 44 W/m 2. Thus, there is a net cooling of about 13 W/m 2. [22] If the clouds were removed with all else remaining the same, the Earth would lose this much cooling and the global temperatures would increase.
In planetary geology, an albedo feature is a large area on the surface of a planet (or other Solar System body) which shows a contrast in brightness or darkness with adjacent areas. Historically, albedo features were the first (and usually only) features to be seen and named on Mars and Mercury .
A 1934 map showing some of Mercury's albedo features. This is a list of the albedo features of the planet Mercury as seen by early telescopic observation. Early telescopic observations of Mercury were based on the assumption that Mercury keeps one of its faces permanently turned toward the Sun, through the mechanism of tidal locking. Although ...
The albedo of several types of roofs (lower values means higher temperatures). Reflective surfaces, or ground-based albedo modification (GBAM), is a solar radiation management method of enhancing Earth's albedo (the ability to reflect the visible, infrared, and ultraviolet wavelengths of the Sun, reducing heat transfer to the surface).
Diffuse reflection on sphere and flat disk, each for the case of a geometric albedo of 1. For the hypothetical case of a plane surface, the geometric albedo is the albedo of the surface when the illumination is provided by a beam of radiation that comes in perpendicular to the surface.