enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic symmetry in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Cyclic_symmetry_in_three...

    In three dimensional geometry, there are four infinite series of point groups in three dimensions (n≥1) with n-fold rotational or reflectional symmetry about one axis (by an angle of 360°/n) that does not change the object. They are the finite symmetry groups on a cone. For n = ∞ they correspond to four frieze groups. Schönflies notation ...

  3. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    When comparing the symmetry type of two objects, the origin is chosen for each separately, i.e., they need not have the same center. Moreover, two objects are considered to be of the same symmetry type if their symmetry groups are conjugate subgroups of O(3) (two subgroups H 1, H 2 of a group G are conjugate, if there exists g ∈ G such that H 1 = g −1 H 2 g).

  4. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    However, letting H = {1, ρ, ρ 2} ⊂ D 3 be the cyclic subgroup generated by a rotation, the decorated figure X + consists of a 3-cycle of arrows with consistent orientation. Then H is normal, since drawing such a cycle with either orientation yields the same symmetry group H .

  5. Crystallographic point group - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_point_group

    In crystallography, a crystallographic point group is a three dimensional point group whose symmetry operations are compatible with a three dimensional crystallographic lattice. According to the crystallographic restriction it may only contain one-, two-, three-, four- and sixfold rotations or rotoinversions. This reduces the number of ...

  6. Point group - Wikipedia

    en.wikipedia.org/wiki/Point_group

    In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d).

  7. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    For n = 3, 4 there are two additional one-dimensional irreducible representations, corresponding to maps to the cyclic group of order 3: A 3 ≅ C 3 and A 4 → A 4 /V ≅ C 3. For n ≥ 7 , there is just one irreducible representation of degree n − 1 , and this is the smallest degree of a non-trivial irreducible representation.

  8. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    is a cycle of length three, since h(1) = 4, h(4) = 3 and h(3) = 1, leaving 2 and 5 untouched. We denote such a cycle by (1 4 3), but it could equally well be written (4 3 1) or (3 1 4) by starting at a different point. The order of a cycle is equal to its length. Cycles of length two are transpositions.

  9. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...