enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linnett double-quartet theory - Wikipedia

    en.wikipedia.org/wiki/Linnett_Double-Quartet_Theory

    However, compare this with the situation in ethylene: again, all the electrons are in close-pairs but now there is no electron density along the internuclear axis. The result is that the energy required to overcome charge correlation and pair the electrons up is compensated to a lesser extent by the bonding in ethylene as compared with ethane.

  3. One-electron universe - Wikipedia

    en.wikipedia.org/wiki/One-electron_universe

    The one-electron universe postulate, proposed by theoretical physicist John Wheeler in a telephone call to Richard Feynman in the spring of 1940, is the hypothesis that all electrons and positrons are actually manifestations of a single entity moving backwards and forwards in time. According to Feynman:

  4. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2, written as [Ar] 3d 4 4s 2, but whose actual configuration given in the table below is [Ar] 3d 5 4s 1.

  5. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    Baryonic matter forms about 4% of the total energy density of the observable universe, with an average density of about 0.25 particles/m 3 (mostly protons and electrons). [112] Within a galaxy such as the Milky Way , particles have a much higher concentration, with the density of matter in the interstellar medium (ISM) ranging from 10 5 to 10 9 ...

  6. Triplet state - Wikipedia

    en.wikipedia.org/wiki/Triplet_state

    It is particularly important for systems at atomic length scales, such as individual atoms, protons, or electrons. A triplet state occurs in cases where the spins of two unpaired electrons, each having spin s = 1/2, align to give S = 1, in contrast to the more common case of two electrons aligning oppositely to give S = 0, a spin singlet.

  7. Electron counting - Wikipedia

    en.wikipedia.org/wiki/Electron_counting

    neutral counting: Ti contributes 4 electrons, each chlorine radical contributes one each: 4 + 4 × 1 = 8 valence electrons ionic counting: Ti 4+ contributes 0 electrons, each chloride anion contributes two each: 0 + 4 × 2 = 8 valence electrons conclusion: Having only 8e (vs. 18 possible), we can anticipate that TiCl 4 will be a good Lewis acid ...

  8. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The p z orbital is the same as the p 0 orbital, but the p x and p y are formed by taking linear combinations of the p +1 and p −1 orbitals (which is why they are listed under the m = ±1 label). Also, the p +1 and p −1 are not the same shape as the p 0 , since they are pure spherical harmonics .

  9. Singlet state - Wikipedia

    en.wikipedia.org/wiki/Singlet_state

    The ability of positronium to form both singlet and triplet states is described mathematically by saying that the product of two doublet representations (meaning the electron and positron, which are both spin-1/2 doublets) can be decomposed into the sum of an adjoint representation (the triplet or spin 1 state) and a trivial representation (the ...