Ad
related to: metric tensor functions calculator with solution
Search results
Results from the WOW.Com Content Network
A metric tensor field g on M assigns to each point p of M a metric tensor g p in the tangent space at p in a way that varies smoothly with p. More precisely, given any open subset U of manifold M and any (smooth) vector fields X and Y on U , the real function g ( X , Y ) ( p ) = g p ( X p , Y p ) {\displaystyle g(X,Y)(p)=g_{p}(X_{p},Y_{p})} is ...
In general relativity, post-Newtonian expansions (PN expansions) are used for finding an approximate solution of Einstein field equations for the metric tensor. The approximations are expanded in small parameters that express orders of deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to ...
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation, the metric tensor can also be thought of as representing the 'gravitational potential'. The metric tensor is often just called 'the metric'.
But if the exact solution is required or a solution describing strong fields, the evolution of the metric and the stress–energy tensor must be solved for together. To obtain solutions, the relevant equations are the above quoted EFE (in either form) plus the continuity equation (to determine evolution of the stress–energy tensor):
Noteworthy examples of vacuum solutions, electrovacuum solutions, and so forth, are listed in specialized articles (see below). These solutions contain at most one contribution to the energy–momentum tensor, due to a specific kind of matter or field. However, there are some notable exact solutions which contain two or three contributions ...
Working in a coordinate chart with coordinates (,,,) labelled 1 to 4 respectively, we begin with the metric in its most general form (10 independent components, each of which is a smooth function of 4 variables). The solution is assumed to be spherically symmetric, static and vacuum.
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
Ad
related to: metric tensor functions calculator with solution