enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  3. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.

  4. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    A conventional choice is to add noise with a standard deviation of / for a sample size n; this noise is often drawn from a Student-t distribution with n-1 degrees of freedom. [47] This results in an approximately-unbiased estimator for the variance of the sample mean. [48]

  5. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...

  6. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  7. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    where N is the population size, n is the sample size, m x is the mean of the x variate and s x 2 and s y 2 ... The sample estimate was 71,866.333 baptisms per year ...

  8. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    If the population size N is known we can estimate the population mean using ¯ ^ = ^ = ′. If the sampling design is one that results in a fixed sample size n (such as in pps sampling ), then the variance of this estimator is:

  9. Bayesian average - Wikipedia

    en.wikipedia.org/wiki/Bayesian_average

    A Bayesian average is a method of estimating the mean of a population using outside information, especially a pre-existing belief, [1] which is factored into the calculation. This is a central feature of Bayesian interpretation. This is useful when the available data set is small. [2] Calculating the Bayesian average uses the prior mean m and a ...