Search results
Results from the WOW.Com Content Network
A kind of opposite of a sorting algorithm is a shuffling algorithm. These are fundamentally different because they require a source of random numbers. Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers.
While some divide-and-conquer algorithms such as quicksort and mergesort outperform insertion sort for larger arrays, non-recursive sorting algorithms such as insertion sort or selection sort are generally faster for very small arrays (the exact size varies by environment and implementation, but is typically between 7 and 50 elements ...
In computer science, selection sort is an in-place comparison sorting algorithm.It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort.
Merge sort is often the best choice for sorting a linked list: in this situation it is relatively easy to implement a merge sort in such a way that it requires only Θ(1) extra space, and the slow random-access performance of a linked list makes some other algorithms (such as quicksort) perform poorly, and others (such as heapsort) completely ...
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
qsort is a C standard library function that implements a sorting algorithm for arrays of arbitrary objects according to a user-provided comparison function. It is named after the "quicker sort" algorithm [1] (a quicksort variant due to R. S. Scowen), which was originally used to implement it in the Unix C library, although the C standard does not require it to implement quicksort.
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 [1] and published in 1961. [2] It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. [3]
Such a component or property is called a sort key. For example, the items are books, the sort key is the title, subject or author, and the order is alphabetical. A new sort key can be created from two or more sort keys by lexicographical order. The first is then called the primary sort key, the second the secondary sort key, etc.