Search results
Results from the WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The three sides of a right triangle are related by the Pythagorean theorem, which in modern algebraic notation can be written + =, where is the length of the hypotenuse (side opposite the right angle), and and are the lengths of the legs (remaining two sides).
The Pythagorean theorem, and hence this length, can also be derived from the law of cosines in trigonometry. In a right triangle, the cosine of an angle is the ratio of the leg adjacent of the angle and the hypotenuse. For a right angle γ (gamma), where the adjacent leg equals 0, the cosine of γ also equals 0.
The use of the Pythagorean theorem and the tangent secant theorem can be replaced by a single application of the power of a point theorem. Case of acute angle γ, where a < 2b cos γ. Drop the perpendicular from A onto a = BC, creating a line segment of length b cos γ. Duplicate the right triangle to form the isosceles triangle ACP.
There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [7] or as a special case of De Gua's theorem (for the particular case of acute triangles), [8] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).
The 30°–60°–90° triangle is the only right triangle whose angles are in an arithmetic progression. The proof of this fact is simple and follows on from the fact that if α, α + δ, α + 2δ are the angles in the progression then the sum of the angles 3α + 3δ = 180°. After dividing by 3, the angle α + δ must be 60°. The right angle ...
The Pythagorean theorem is a mathematical puzzle involving three sides of a right triangle. Johnson and Jackson spent months working to solve it using trigonometry, which had never been done before.
A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.