Search results
Results from the WOW.Com Content Network
The nuclear fuel cycle employs a full actinide recycle with two major options: One is an intermediate-size (150–600 MWe) sodium-cooled reactor with uranium-plutonium-minor-actinide-zirconium metal alloy fuel, supported by a fuel cycle based on pyrometallurgical reprocessing in facilities integrated with the reactor. The second is a medium to ...
The Nuclear Waste Policy Act of 1982 established a timetable and procedure for constructing a permanent, underground repository for high-level radioactive waste by the mid-1990s, and provided for some temporary storage of waste, including spent fuel from 104 civilian nuclear reactors that produce about 19.4% of electricity there. [38]
The advanced reprocessing of spent nuclear fuel is a potential key to achieve a sustainable nuclear fuel cycle and to tackle the heavy burden of nuclear waste management. In particular, the development of such advanced reprocessing systems may save natural resources, reduce waste inventory and enhance the public acceptance of nuclear energy.
Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle , it will have different isotopic ...
The energy-generating fission zone steadily advances through the core, effectively consuming fertile material in front of it and leaving spent fuel behind. Meanwhile, the heat released by fission is absorbed by the molten sodium and subsequently transferred into a closed-cycle aqueous loop, where electric power is generated by steam turbines. [21]
(The Center Square) – The Canadian government's ongoing plan to permanently store 50,000 tons of highly radioactive nuclear waste in the Great Lakes basin near Ontario has sparked bipartisan ...
Similar opposition was voiced by Texas Gov. Gregg Abbott, and state lawmakers in both states recently passed bills intended to prevent storage of nuclear waste as proposed by the two companies.
The primary argument for pursuing IFR-style technology today is that it provides the best solution to the existing nuclear waste problem because fast reactors can be fueled from the waste products of existing reactors as well as from the plutonium used in weapons, as is the case in the operating BN-800 reactor.