Search results
Results from the WOW.Com Content Network
Heat causes electrons to move around and distort the current in the fMRI detector, producing thermal noise. Thermal noise rises with the temperature. It also depends on the range of frequencies detected by the receiver coil and its electrical resistance. It affects all voxels similarly, independent of anatomy. [56]
Within fMRI methodology, there are two different ways that are typically employed to present stimuli. One method is a block related design, in which two or more different conditions are alternated in order to determine the differences between the two conditions, or a control may be included in the presentation occurring between the two conditions.
Noise in fMRI can arise from a variety of different factors including heart beat, changes in the blood brain barrier, characteristics of the acquiring scanner, or unintended effects of analysis. Some researchers have proposed that the variability in functional connectivity in fMRI studies is consistent with the variability that one would expect ...
Resting state fMRI (rs-fMRI or R-fMRI), also referred to as task-independent fMRI or task-free fMRI, is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not being performed.
Typically in MRS a single spectrum is acquired by averaging enough spectra over a long acquisition time. [8] Averaging is necessary because of the complex spectral structures and relatively low concentrations of many brain metabolites, which result in a low signal-to-noise ratio (SNR) in MRS of a living brain.
EEG-fMRI (short for EEG-correlated fMRI or electroencephalography-correlated functional magnetic resonance imaging) is a multimodal neuroimaging technique whereby EEG and fMRI data are recorded synchronously for the study of electrical brain activity in correlation with haemodynamic changes in brain during the electrical activity, be it normal function or associated with disorders.
However, this proves to be very susceptible to measurement noise, so increasingly complex measures were developed to capture the measure while minimizing the noise. An important element of these calculations is the sum of squares of the diffusivity differences = (λ 1 − λ 2) 2 + (λ 1 − λ 3) 2 + (λ 2 − λ 3) 2. We use the square root ...
The cause for the correlations in fMRI measurements is theorized to be "correlated firing rates of interconnected neurons." [ 18 ] Resting-state functional magnetic resonance imaging (rs-fMRI) has become a powerful tool to examine networks' functional connectivity throughout the brain, such as the default mode network (DMN). [ 19 ]