Search results
Results from the WOW.Com Content Network
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
Usage on de.wikipedia.org De-morgansche Gesetze; Usage on de.wikibooks.org Digitale Schaltungstechnik/ Schaltalgebra/ De Morgan; Usage on es.wikipedia.org Leyes de De Morgan; Usage on fr.wikibooks.org Électronique numérique : logique/Fonctions logiques élémentaires; Usage on hi.wikipedia.org डिमॉर्गन नियम
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
The principle of inclusion–exclusion, combined with De Morgan's law, can be used to count the cardinality of the intersection of sets as well. Let A k ¯ {\displaystyle {\overline {A_{k}}}} represent the complement of A k with respect to some universal set A such that A k ⊆ A {\displaystyle A_{k}\subseteq A} for each k .
(i.e. an involution that additionally satisfies De Morgan's laws) In a De Morgan algebra, the laws ¬x ∨ x = 1 (law of the excluded middle), and; ¬x ∧ x = 0 (law of noncontradiction) do not always hold. In the presence of the De Morgan laws, either law implies the other, and an algebra which satisfies them becomes a Boolean algebra.
An XNOR gate can be implemented using a NAND gate and an OR-AND-Invert gate, as shown in the following picture. [3] This is based on the identity ¯ (¯) ¯ An alternative, which is useful when inverted inputs are also available (for example from a flip-flop), uses a 2-2 AND-OR-Invert gate, shown on below on the right.
The De Morgan dual is the canonical conjunctive normal form , maxterm canonical form, or Product of Sums (PoS or POS) which is a conjunction (AND) of maxterms. These forms can be useful for the simplification of Boolean functions, which is of great importance in the optimization of Boolean formulas in general and digital circuits in particular.
Expressions in quantum logic describe observables using a syntax that resembles classical logic. However, unlike classical logic, the distributive law a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) fails when dealing with noncommuting observables, such as position and momentum. This occurs because measurement affects the system, and measurement of ...