Search results
Results from the WOW.Com Content Network
The capillary length will vary for different liquids and different conditions. Here is a picture of a water droplet on a lotus leaf. If the temperature is 20 o then = 2.71mm . The capillary length or capillary constant is a length scaling factor that relates gravity and surface tension.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Capillary action is one of the most common fluid mechanical effects explored in the field of microfluidics. Jurin's law is named after James Jurin , who discovered it between 1718 and 1719. [ 2 ] His quantitative law suggests that the maximum height of liquid in a capillary tube is inversely proportional to the tube's diameter.
The capillary length is a length scaling factor that relates gravity, density, and surface tension, and is directly responsible for the shape a droplet for a specific fluid will take. The capillary length stems from the Laplace pressure, using the radius of the droplet. Using the capillary length we can define microdrops and macrodrops.
The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a
In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The movement of a fluid through porous media is described by the combination of Darcy's law with the principle of conservation of mass in order to express the capillary force or fluid velocity as a function of various other parameters including the effective pore radius, liquid viscosity or permeability. [3]