enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_methods

    All collocation methods are implicit RungeKutta methods, but not all implicit RungeKutta methods are collocation methods. [28] The Gauss–Legendre methods form a family of collocation methods based on Gauss quadrature. A Gauss–Legendre method with s stages has order 2s (thus, methods with arbitrarily high order can be constructed). [29]

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_RungeKutta_methods

    The RungeKutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is: / / / / / / / / / / / / / / / / / / / / / / / / / / The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.

  4. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_method_(SDE)

    A newer RungeKutta scheme also of strong order 1 straightforwardly reduces to the improved Euler scheme for deterministic ODEs. [2] Consider the vector stochastic process () that satisfies the general Ito SDE = (,) + (,), where drift and volatility are sufficiently smooth functions of their arguments.

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for solving first-order IVPs often fall into one of two large categories: [5] linear multistep methods, or RungeKutta methods.A further division can be realized by dividing methods into those that are explicit and those that are implicit.

  6. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/RungeKutta–Fehlberg...

    In mathematics, the RungeKutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of RungeKutta methods .

  7. Adaptive step size - Wikipedia

    en.wikipedia.org/wiki/Adaptive_step_size

    For simplicity, the following example uses the simplest integration method, the Euler method; in practice, higher-order methods such as RungeKutta methods are preferred due to their superior convergence and stability properties. Consider the initial value problem ′ = (, ()), =

  8. Dormand–Prince method - Wikipedia

    en.wikipedia.org/wiki/Dormand–Prince_method

    In numerical analysis, the Dormand–Prince (RKDP) method or DOPRI method, is an embedded method for solving ordinary differential equations (ODE). [1] The method is a member of the RungeKutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions.

  9. General linear methods - Wikipedia

    en.wikipedia.org/wiki/General_linear_methods

    They include multistage RungeKutta methods that use intermediate collocation points, as well as linear multistep methods that save a finite time history of the solution. John C. Butcher originally coined this term for these methods and has written a series of review papers, [1] [2] [3] a book chapter, [4] and a textbook [5] on the topic.