Search results
Results from the WOW.Com Content Network
In genetics, a strain is said to be auxotrophic if it carries a mutation that renders it unable to synthesize an essential compound. For example, a yeast mutant with an inactivated uracil synthesis pathway gene is a uracil auxotroph (e.g., if the yeast Orotidine 5'-phosphate decarboxylase gene is inactivated, the resultant strain is a uracil ...
URA3 is often used in yeast research as a "marker gene", that is, a gene to label chromosomes or plasmids. URA3 encodes Orotidine 5'-phosphate decarboxylase (ODCase) , which is an enzyme that catalyzes one reaction in the synthesis of pyrimidine ribonucleotides (a component of RNA ).
Auxotrophic selection markers that allow an auxotrophic organism to grow in minimal growth medium may also be used; examples of these are LEU2 and URA3 which are used with their corresponding auxotrophic strains of yeast. [7] Another kind of selectable marker allows for the positive selection of plasmid with cloned gene.
Selectable markers allow scientists to separate non-recombinant organisms (those which do not contain the selectable marker) from recombinant organisms (those which do); that is, a recombinant DNA molecule such as a plasmid expression vector is introduced into bacterial cells, and some bacteria are successfully transformed while some remain non-transformed.
In this image, a gene from one bacterial cell is moved to another bacterial cell. This process of the second bacterial cell taking up new genetic material is called transformation. In molecular biology and genetics , transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic ...
Ames test procedure. The Ames test is a widely employed method that uses bacteria to test whether a given chemical can cause mutations in the DNA of the test organism. More formally, it is a biological assay to assess the mutagenic potential of chemical compounds. [1]
Yeast artificial chromosomes (YACs) are genetically engineered chromosomes derived from the DNA of the yeast, Saccharomyces cerevisiae, which is then ligated into a bacterial plasmid. By inserting large fragments of DNA, from 100–1000 kb, the inserted sequences can be cloned and physically mapped using a process called chromosome walking .
Synthetic genetic array analysis is generally conducted using colony arrays on petriplates at standard densities (96, 384, 768, 1536). To perform a SGA analysis in S.cerevisiae, the query gene deletion is crossed systematically with a deletion mutant array (DMA) containing every viable knockout ORF of the yeast genome (currently 4786 strains). [9]