Search results
Results from the WOW.Com Content Network
The Metropolis-Hastings algorithm sampling a normal one-dimensional posterior probability distribution. In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. New ...
Gibbs sampling, in its basic incarnation, is a special case of the Metropolis–Hastings algorithm. The point of Gibbs sampling is that given a multivariate distribution it is simpler to sample from a conditional distribution than to marginalize by integrating over a joint distribution .
Gibbs sampling can be viewed as a special case of Metropolis–Hastings algorithm with acceptance rate uniformly equal to 1. When drawing from the full conditional distributions is not straightforward other samplers-within-Gibbs are used (e.g., see [8] [9]). Gibbs sampling is popular partly because it does not require any 'tuning'.
In particular, in the Metropolis–Hastings algorithm and in its important particular case, Gibbs sampling, it is used as a simple and reliable condition to provide the desirable equilibrium state. Now, the principle of detailed balance is a standard part of the university courses in statistical mechanics, physical chemistry , chemical and ...
Hamiltonian Monte Carlo corresponds to an instance of the Metropolis–Hastings algorithm, with a Hamiltonian dynamics evolution simulated using a time-reversible and volume-preserving numerical integrator (typically the leapfrog integrator) to propose a move to a new point in the state space.
When sampling from a full-conditional density is not easy, a single iteration of slice sampling or the Metropolis-Hastings algorithm can be used within-Gibbs to sample from the variable in question. If the full-conditional density is log-concave, a more efficient alternative is the application of adaptive rejection sampling (ARS) methods.
Another class of methods for sampling points in a volume is to simulate random walks over it (Markov chain Monte Carlo). Such methods include the Metropolis–Hastings algorithm, Gibbs sampling, Wang and Landau algorithm, and interacting type MCMC methodologies such as the sequential Monte Carlo samplers. [99]
Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling to compute their results. In statistical mechanics applications prior to the introduction of the Metropolis algorithm, the method consisted of generating a large number of random configurations of the system, computing the properties of interest (such as energy or density) for each configuration ...