Search results
Results from the WOW.Com Content Network
Aryl azides and nitroaromatics can also be generated from phenylboronic acid. [4] Phenylboronic acid can also be regioselectively halodeboronated using aqueous bromine, chlorine, or iodine: [10] PhB(OH) 2 + Br 2 + H 2 O → PhBr + B(OH) 3 + HBr. Boronic esters result from the condensation of boronic acids with alcohols. This transformation is ...
Boronic acids are known to bind to active site serines and are part of inhibitors for porcine pancreatic lipase, [2] subtilisin [3] and the protease Kex2. [4] Furthermore, boronic acid derivatives constitute a class of inhibitors for human acyl-protein thioesterase 1 and 2, which are cancer drug targets within the Ras cycle. [5]
The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
[2] [3] It can be viewed as benzaldehyde missing one hydrogen. The benzoyl group has a mass of 105 amu. The term "benzoyl" should not be confused with benzyl, which has the formula −CH 2 −C 6 H 5. The benzoyl group is given the symbol "Bz" whereas benzyl is commonly abbreviated "Bn".
4-Formylphenyl boronic acid crystallizes in colorless needles [2] or is obtained as an odorless, whitish powder, which dissolves little in cold but better in hot water. The compound is quite stable [4] and readily forms dimers and cyclic trimeric anhydrides, which complicate purification and tend to protodeboronize, a secondary reaction that occurs frequently in the Suzuki coupling, with ...
Anisyl alcohol (4-methoxybenzyl alcohol) is an organic compound with the chemical formula CH 3 OC 6 H 4 CH 2 OH. [1] It is a colorless liquid that is used as a fragrance and flavorant. It occurs naturally but is produced by reduction of the aldehyde or carboxylic acid. [2] It reacts with hydrogen bromide to give 4-methoxylbenzyl bromide. [3]
The reaction of boron trichloride with alcohols was reported in 1931, and was used to prepare dimethoxyboron chloride, B(OCH 3) 2 Cl. [3] Egon Wiberg and Wilhelm Ruschmann used it to prepare tetrahydroxydiboron by first introducing the boron–boron bond by reduction with sodium and then hydrolysing the resulting tetramethoxydiboron, B 2 (OCH 3) 4, to produce what they termed sub-boric acid. [4]