Search results
Results from the WOW.Com Content Network
Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface.In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.
The angle of incidence and angle of reflection will be the same. If a concave parabolic obstacle is used, a plane wave pulse will converge on a point after reflection. This point is the focal point of the mirror. Circular waves can be produced by dropping a single drop of water into the ripple tank.
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
Fig. 1: Underwater plants in a fish tank, and their inverted images (top) formed by total internal reflection in the water–air surface. In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflected back into ...
Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface. [ 1 ] The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by ...
Reflection (physics), a common wave phenomenon Specular reflection, reflection from a smooth surface . Mirror image, a reflection in a mirror or in water; Retroreflection, technology for returning light in the direction from which it came
The waves reflected at the interface travel back to the transducer, then the acoustic impedance of the sample is determined by measuring the amplitude of the wave reflected from the propagation medium/sample interface. [4] From the reflected wave, it is possible to determine some properties of the sample that is desired to characterize.
Standing waves commonly arise when a boundary blocks further propagation of the wave, thus causing wave reflection, and therefore introducing a counter-propagating wave. For example, when a violin string is displaced, transverse waves propagate out to where the string is held in place at the bridge and the nut , where the waves are reflected back.