Search results
Results from the WOW.Com Content Network
The equation relates values of the Riemann zeta function at the points s and 1 − s, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that ζ ( s ) has a simple zero at each even negative integer s = −2 n , known as the trivial zeros of ζ ( s ) .
The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane. The successful characterisation of its non-trivial zeros in the wider plane is important in number theory, because of the Riemann hypothesis .
Similarly Selberg zeta functions satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. But there are also some major differences; for example, they are not given by Dirichlet series.
The Hypothesis and the zeta function come from German mathematician Bernhard Riemann, who described them in 1859. Riemann developed them while studying prime numbers and their distribution.
Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas (Various Observations about Infinite Series), published by St Petersburg Academy in 1737. [1] [2]
The Riemann zeta function can be replaced by a Dirichlet L-function of a Dirichlet character χ. The sum over prime powers then gets extra factors of χ(p m), and the terms Φ(1) and Φ(0) disappear because the L-series has no poles.
where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...
Other functions called zeta functions, but not analogous to the Riemann zeta function. Jacobi zeta function; Weierstrass zeta function; Topics related to zeta functions. Artin conjecture; Birch and Swinnerton-Dyer conjecture; Riemann hypothesis and the generalized Riemann hypothesis. Selberg class S; Explicit formulae for L-functions; Trace formula