enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non-trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011. Animation showing the Riemann zeta function along the critical line. Zeta(1/2 + I y) for y ranging from 1000 to 1005.

  3. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number.

  4. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The Riemann hypothesis can be generalized by replacing the Riemann zeta function by the formally similar, but much more general, global L-functions. In this broader setting, one expects the non-trivial zeros of the global L-functions to have real part 1/2. It is these conjectures, rather than the classical Riemann hypothesis only for the single ...

  5. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of ⁠ 1 / 2 ⁠.

  6. Lindelöf hypothesis - Wikipedia

    en.wikipedia.org/wiki/Lindelöf_hypothesis

    Backlund [19] (1918–1919) showed that the Lindelöf hypothesis is equivalent to the following statement about the zeros of the zeta function: for every ε > 0, the number of zeros with real part at least 1/2 + ε and imaginary part between T and T + 1 is o(log(T)) as T tends to infinity. The Riemann hypothesis implies that there are no zeros ...

  7. Selberg's zeta function conjecture - Wikipedia

    en.wikipedia.org/wiki/Selberg's_zeta_function...

    In mathematics, the Selberg conjecture, named after Atle Selberg, is a theorem about the density of zeros of the Riemann zeta function ζ(1/2 + it).It is known that the function has infinitely many zeroes on this line in the complex plane: the point at issue is how densely they are clustered.

  8. Odlyzko–Schönhage algorithm - Wikipedia

    en.wikipedia.org/wiki/Odlyzko–Schönhage_algorithm

    The Riemann–Siegel formula used for calculating the Riemann zeta function with imaginary part T uses a finite Dirichlet series with about N = T 1/2 terms, so when finding about N values of the Riemann zeta function it is sped up by a factor of about T 1/2.

  9. Generalized Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Generalized_Riemann_hypothesis

    The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q , with ring of integers Z .