Search results
Results from the WOW.Com Content Network
The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non-trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011. Animation showing the Riemann zeta function along the critical line. Zeta(1/2 + I y) for y ranging from 1000 to 1005.
Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number.
The Riemann hypothesis can be generalized by replacing the Riemann zeta function by the formally similar, but much more general, global L-functions. In this broader setting, one expects the non-trivial zeros of the global L-functions to have real part 1/2. It is these conjectures, rather than the classical Riemann hypothesis only for the single ...
The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of 1 / 2 .
Backlund [19] (1918–1919) showed that the Lindelöf hypothesis is equivalent to the following statement about the zeros of the zeta function: for every ε > 0, the number of zeros with real part at least 1/2 + ε and imaginary part between T and T + 1 is o(log(T)) as T tends to infinity. The Riemann hypothesis implies that there are no zeros ...
In mathematics, the Selberg conjecture, named after Atle Selberg, is a theorem about the density of zeros of the Riemann zeta function ζ(1/2 + it).It is known that the function has infinitely many zeroes on this line in the complex plane: the point at issue is how densely they are clustered.
The Riemann–Siegel formula used for calculating the Riemann zeta function with imaginary part T uses a finite Dirichlet series with about N = T 1/2 terms, so when finding about N values of the Riemann zeta function it is sped up by a factor of about T 1/2.
The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q , with ring of integers Z .