Search results
Results from the WOW.Com Content Network
Lead burning is an autogenous welding process. Two sheets of lead are formed mechanically to lie close against each other. They are then heated with the torch flame and flow together. No filler rod is required, the sheets form their own filler (autogenous welding). Neither is a flux used. [2]
The efficiency is dependent on the welding process used, with shielded metal arc welding having a value of 0.75, gas metal arc welding and submerged arc welding, 0.9, and gas tungsten arc welding, 0.8. [60] Methods of alleviating the stresses and brittleness created in the HAZ include stress relieving and tempering. [61]
While weldability can be generally defined for various materials, some welding processes work better for a given material than others. Even within a certain process the quality of the weld may vary greatly depending on parameters, such as the electrode material, shielding gases, welding speed, and cooling rate. [1]
The process is widely used in construction because of its high welding speed and portability. Submerged arc welding (SAW) is a high-productivity welding process in which the arc is struck beneath a covering layer of granular flux. This increases arc quality, since contaminants in the atmosphere are blocked by the flux.
The ISASMELT process is a more recent smelting method that may act as an extension to primary production; battery paste from spent lead–acid batteries (containing lead sulfate and lead oxides) has its sulfate removed by treating it with alkali, and is then treated in a coal-fueled furnace in the presence of oxygen, which yields impure lead ...
In building construction today some lead flashing is welded but soldered copper flashing is much more common in America. In the automotive body repair industry before the 1980s, oxyacetylene gas torch welding was seldom used to weld sheet metal, since warping was a byproduct as well as excess heat.
Lead and cadmium were found in a majority of the protein powders that were tested. There is no safe level of lead, which has been linked to developmental disorders and high blood pressure.
The heat from the welding process and subsequent re-cooling causes this change from the weld interface to the termination of the sensitizing temperature in the base metal. The extent and magnitude of property change depends primarily on the base material, the weld filler metal, and the amount and concentration of heat input by the welding process.