Search results
Results from the WOW.Com Content Network
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
The terms "mass" or "masses" are used when only SI units are cited in a requirement. The following note appears where the term "weight" is first used in a law or regulation. U.S. federal law, which supersedes this handbook, also defines weight, particularly Net Weight, in terms of the avoirdupois pound or mass pound.
This glossary of physics is a list of definitions of terms and concepts relevant to physics, ... Also called mass density. ... (mathematics) 2. (physics) particle
mass "The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1] The mass of one litre of water at the ...
The poundal is defined as the force necessary to accelerate an object of one-pound mass at 1 ft/s 2, and is equivalent to about 1/32.2 of a pound-force. The slug is defined as the amount of mass that accelerates at 1 ft/s 2 when one pound-force is exerted on it, and is equivalent to about 32.2 pounds (mass).
Mass fraction: x: Mass of a substance as a fraction of the total mass kg/kg 1: intensive (Mass) Density (or volume density) ρ: Mass per unit volume kg/m 3: L −3 M: intensive Mean lifetime: τ: Average time for a particle of a substance to decay s T: intensive Molar concentration: C: Amount of substance per unit volume mol⋅m −3: L −3 N ...
Mass, strictly the inertial mass, represents a quantity of matter. It relates the acceleration of a body to the applied force via Newton's law, F = m × a: force equals mass times acceleration. A force of 1 N (newton) applied to a mass of 1 kg will accelerate it at 1 m/s 2. This is true whether the object is floating in space or in a gravity ...
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.