enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.

  3. Auxetics - Wikipedia

    en.wikipedia.org/wiki/Auxetics

    The earliest published example of a material with negative Poisson's constant is due to A. G. Kolpakov in 1985, "Determination of the average characteristics of elastic frameworks"; the next synthetic auxetic material was described in Science in 1987, entitled "Foam structures with a Negative Poisson's Ratio" [1] by R.S. Lakes from the ...

  4. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    The elastic properties can be well-characterized by the Young's modulus, Poisson's ratio, Bulk modulus, and Shear modulus or they may be described by the Lamé parameters. Young's modulus [ edit ]

  5. Lateral strain - Wikipedia

    en.wikipedia.org/wiki/Lateral_strain

    Poisson's Ratio defines the ratio between the negative lateral strain and the longitudinal strain, so lateral strain can be calculated using: [1] ...

  6. Impulse excitation technique - Wikipedia

    en.wikipedia.org/wiki/Impulse_excitation_technique

    The Poisson's ratio is a measure in which a material tends to expand in directions perpendicular to the direction of compression. After measuring the Young's modulus and the shear modulus, dedicated software determines the Poisson's ratio using Hooke's law which can only be applied to isotropic materials according to the different standards.

  7. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    = Poisson's Ratio. Flexural rigidity of a plate has units of Pa·m 3, i.e. one dimension of length less than the same property for the rod, as it refers to the moment per unit length per unit of curvature, and not the total moment. I is termed as moment of inertia. J is denoted as 2nd moment of inertia/polar moment of inertia.

  8. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  9. Talk:Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Talk:Poisson's_ratio

    This constant, called Poissonratio, is an intrinsic material property just like Young’modulus and Shear modulus." The standard relations between the Poisson's ratio and the other moduli of elasticity are not generally valid for incrementally linear elasticity.