enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  3. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    The transpose of a matrix A, denoted by A T, [3] ⊤ A, A ⊤, , [4] [5] A′, [6] A tr, t A or A t, may be constructed by any one of the following methods: Reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain A T; Write the rows of A as the columns of A T; Write the columns of A as the rows of A T

  4. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    B i consists of n block matrices of size m × m, stacked column-wise, and all these matrices are all-zero except for the i-th one, which is a m × m identity matrix I m. Then the vectorized version of X can be expressed as follows: vec ⁡ ( X ) = ∑ i = 1 n B i X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {B ...

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  6. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    There is a similar notion of column equivalence, defined by elementary column operations; two matrices are column equivalent if and only if their transpose matrices are row equivalent. Two rectangular matrices that can be converted into one another allowing both elementary row and column operations are called simply equivalent .

  7. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  8. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    Typically, the matrix is assumed to be stored in row-major or column-major order (i.e., contiguous rows or columns, respectively, arranged consecutively). Performing an in-place transpose (in-situ transpose) is most difficult when N ≠ M , i.e. for a non-square (rectangular) matrix, where it involves a complex permutation of the data elements ...

  9. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    To use column-major order in a row-major environment, or vice versa, for whatever reason, one workaround is to assign non-conventional roles to the indexes (using the first index for the column and the second index for the row), and another is to bypass language syntax by explicitly computing positions in a one-dimensional array.