Search results
Results from the WOW.Com Content Network
Executing a set of statements only if some condition is met (choice - i.e., conditional branch) Executing a set of statements zero or more times, until some condition is met (i.e., loop - the same as conditional branch) Executing a set of distant statements, after which the flow of control usually returns (subroutines, coroutines, and ...
Common among these are the break and continue statements found in C and its derivatives. The break statement causes the innermost loop to be terminated immediately when executed. The continue statement will move at once to the next iteration without further progress through the loop body for the current iteration.
Switch statements function somewhat similarly to the if statement used in programming languages like C/C++, C#, Visual Basic .NET, Java and exist in most high-level imperative programming languages such as Pascal, Ada, C/C++, C#, [1]: 374–375 Visual Basic .NET, Java, [2]: 157–167 and in many other types of language, using such keywords as ...
This process is repeated as long as the expression evaluates to true. If the expression is false the loop terminates. A while loop sets the truth of a statement as a necessary condition for the code's execution. A do-while loop provides for the action's ongoing execution until the condition is no longer true.
Loop fission (or loop distribution) is a compiler optimization in which a loop is broken into multiple loops over the same index range with each taking only a part of the original loop's body.
If the main thread exits, all threads of the process are forcefully stopped, thus all execution ends and the process/program terminates. The threads inside the infinite loops can perform "housekeeping" tasks or they can be in a blocked state waiting for input (from socket/queue) and resume execution every time input is received.
Nested functions can be used for unstructured control flow, by using the return statement for general unstructured control flow.This can be used for finer-grained control than is possible with other built-in features of the language – for example, it can allow early termination of a for loop if break is not available, or early termination of a nested for loop if a multi-level break or ...
Dekker's algorithm is the first known correct solution to the mutual exclusion problem in concurrent programming where processes only communicate via shared memory. The solution is attributed to Dutch mathematician Th. J. Dekker by Edsger W. Dijkstra in an unpublished paper on sequential process descriptions [1] and his manuscript on cooperating sequential processes. [2]