Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The matrix multiplication exponent, usually denoted ω, is the smallest real number for which any two matrices over a field can be multiplied together using + field operations. This notation is commonly used in algorithms research, so that algorithms using matrix multiplication as a subroutine have bounds on running time that can update as ...
ALGLIB is an open source / commercial numerical analysis library with C++ version; Armadillo is a C++ linear algebra library (matrix and vector maths), aiming towards a good balance between speed and ease of use. [1] It employs template classes, and has optional links to BLAS and LAPACK. The syntax is similar to MATLAB.
Here, the traditional BLAS functions provide typically good performance for large matrices. However, when computing e.g., matrix-matrix-products of many small matrices by using the GEMM routine, those architectures show significant performance losses. To address this issue, in 2017 a batched version of the BLAS function has been specified. [52]
The straightforward multiplication of a matrix that is X × Y by a matrix that is Y × Z requires XYZ ordinary multiplications and X(Y − 1)Z ordinary additions. In this context, it is typical to use the number of ordinary multiplications as a measure of the runtime complexity. If A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × ...
In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
Freivalds' algorithm (named after Rūsiņš Mārtiņš Freivalds) is a probabilistic randomized algorithm used to verify matrix multiplication. Given three n × n matrices A {\displaystyle A} , B {\displaystyle B} , and C {\displaystyle C} , a general problem is to verify whether A × B = C {\displaystyle A\times B=C} .