Search results
Results from the WOW.Com Content Network
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of n {\displaystyle n} items numbered from 1 up to n {\displaystyle n} , each with a weight w i {\displaystyle w_{i}} and a value v i {\displaystyle v_{i}} , along with a maximum weight capacity ...
The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
One variation of this problem assumes that the people making change will use the "greedy algorithm" for making change, even when that requires more than the minimum number of coins. Most current currencies use a 1-2-5 series , but some other set of denominations would require fewer denominations of coins or a smaller average number of coins to ...
Backtracking is an important tool for solving constraint satisfaction problems, [2] such as crosswords, verbal arithmetic, Sudoku, and many other puzzles. It is often the most convenient technique for parsing, [3] for the knapsack problem and other combinatorial optimization problems.
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. [1] In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.